One of the most often mistaken and forgotten problem in basic statistics, when they assume that the fitted regression model is symmetric, aka. does not matter if you fit x~y or y~x. Well, based purely on the method and definition of linear model fitting, this is a very wrong assumption and I think one of the main cause for this is that linear models are always interpreted together with correlation values where this causational direction is not present. Let’s see why and learn how to use and interpret correctley, morover what if you need a symmetric model.

The second episode of the Jellybean Mistakes series. Let’s talk about barplots and error bars, where and how to use them appropriately and what other approaches there are for better representation of your data.

Introduction to a new series about common mistakes in statistics, datavis and everything else in biology.

Recently I got the opportunity to attend to SOKENDAI’s Freshmen course. Here I summarise the questions and answers I got on my presentation.

I was interested in web scraping and text/sentinel analysis with R and thought for a practice I can check what are the most commonly used words and phrases in a scientific top journal, like Nature or Science. It can help you to learn several R packages and techniques and also help to find out what are the most popular terms you can use for a research paper’s title if you want to publish with the top.

In the previous post I discussed a bigger project, now let’s see a smaller part of it, learn how to control local BLAST search from R and get back the information from it for further processing.

Create a Shiny webpage on a server to automatically maintain and protect primers’ database with some extra function and a highly user-friendly interface.

So it started… again.